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is given to the classical methodology for calculating lower bounds on
system reliability as formulated in the Maximus Handbook of February

1980.

e

p
— For ease of comparison the Maximus format is adhered to as far

as possible. A11 theoretical work is given in appendices, as is the
description of the computer programs that were deveioped to facilitate
calculations. ~

In addition to the pass/fail test data considered in Maximus the

case of exponential times to failure of components is treated.
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b 1.  INTRODUCTION

It is pertinent to refer to remarks made in the Introduction to
the Maximus Handbook. The first remark recognises the need for
continued research and analysis and that the methodology of Maximus
should be considered as interim in nature. The second remark states
that the limitation is to Classical Statistical Theory and that
extension of the scope of the work to cover Bayesian methods is

deferred.

The present report addresses these two points. Of principal
interest is the Bayesian analog of the Classical Maximus methodology.
However during the course of development, it became necessary to take
a fresh look at the latter and one consequence is that we suggest
improvements to the Lindstrom and Madden method for series systems

and also for the case of repeated components.

It is not surprising that there should be a link between
. Classical and Bayesian approaches to reducing component information
’ to 'equivalent' system information. This is due to the well known
relationship between partial Binomial sums and the Incomplete Beta

P function (Chapter 2).

The Bayesian Statistician expresses uncertainty about the
unknown component reliabilities through prior probability
distributions. For any given component the test data is used to
construct a likelihood function which is then combined with the

prior probability distribution, wusing Baycs' theorem, to give a

vy . @
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posterior distribution of component reliability. The system
reliability is then the appropriate function (the system reliability
function) of component reliabilities. The determination of the
exact system reliability distribution is usually formidably difficult,
hence the search for simple but good approximate methods, including

the reduction methods developed herein.

The intepretation of interval estimate is different using
Classical and Bayes approaches. For example, Tlower 90% limits

have the following interpretations.

(i) Classical: There is at least a 0.90 probability that the
Tower confidence Timit (a random variable) will take on a

value lower than the fixed but unknown system reliability.

(ii) Bayesian: There is at least a 0.90 probability that the
unknown system reliability (a random variable) is greater

than the lower limit.

When random variables and parameters are continuous the phrase
‘at least' can be omitted in (i) and also in (ii) for continuously

distributed parameters.

Classical limits are referred to as confidence limits. Some-
times Bayesian limits are referred to as Bayesian confidence limits
but we shall reserve the use of the word confidence for the classical
case and simply use the term Bayesian limits. Trese are appropriate
percentage points of the posterior distribution of reliability.

The terms credible intervals and credible limits are increasingly used

in the Bayesian context.

—w 7
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Like Maximus we restrict our attention to series/parallel systems.
For other structures such as k out of n or quorum structures the
methods advocated in DAJA37-82-C-0736 can be used. These methods,
based on asymptotic expansions, can also be used to provide a useful
check on the accuracy of the reduction methods herein. Exact limits
can be obtained at the expense of sometime extensive computer
simulation and such simulation was used via the computer programs

described in the appendices.

Finally we stress that the same provisos on the models and

test conditions obtain as for Maximus,




2.  CALCULATING BOUNDS FOR A SINGLE COMPONENT

Suppose that n components of a certain type are tested and
that s prove to be reliable. If the true reliability
(probability of success) is p then the probability of the

above outcome is

[n] pP(1 -p)" .
S

Let the uncertainty in p be described by a Beta random variable B
with probability density function
ap-1 By-1
flp) = p (1 -p)  /Bley, Byl 0 <p<t,
where

g2 -1

BO
B(ags B8,) = | P (1 -p) dp .

This distribution is called the prior distribution. Using Bayes'

theorem the posterior (after tests) distribution is
f(p) = p* (1 -p)P/B(a, B) s

where o« =a +s and B = B, + N - s.
Since the prior and posterior are both Beta, the Beta
distribution is said to be conjugate for pass/fail testing. It is
a flexible (two parameter) distribution for expressing uncertainty
about component reliability prior to testing. Notice that the

prior parameter «, 1S increased by the number of successes and
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80 is increased by the number of failures. Thus it can be helpful

to relate a to successes and g to failures as in Appendix A.3.

Let p, be such that Prob(ﬁ < pa) = a,
i.e. Prob(a > pa) =1 - aq. Then p_ s a lower 100(1 - o)%

Bayesian limit for reliability; see Fig. 1.

Figure 1

1
(p)

Often a uniform prior (a, = 8, = 1) is used to express vague
prior knowledge, whence the posterior probability density function

becomes
£(p) = p°(1 - p)"S/B(s +1, n-s+1).

Percentage points may be obtained by interpolation in tables of the

o maadd



incomplete beta function such as Table 16 of Biometrika, Vol. 1.

Exact limits can be obtained using the computer program described

and Tisted in Appendix B.

Example 1

Let s =11, n=12 with a, = 8 = 1.

distribution of reliability is then B(12, 2).

The posterior

Since the parameters

are integer Table 16 can be used without interpolation. For o = 0.1

the required entry is that for which v, =2 x 12 = 24 and

v, =2 x 2 =14. This is 0.7322, which is the lower 90% limit for

reliability.




3.  CALCULATING LOWER LIMITS FOR A SERIES SYSTEM OF NONREPEATED

INDEPENDENT COMPONENTS

Let there be Kk components in the series system and suppose
that the posterior distributions for reliability are independent

Beta distributions B(“i’ Bi); i=1,2, ..., k.

The components are numbered 1, 2, ..., k so that

o, +B oza, +B8, 2 .02 a + Bk‘ The reduction rules are

described for k = 2 and extend immediately for general k.

Rule (i): If a >a, + 8, then take @ =@ and

2 2

ag * B = ———— X (a, + 8,). Figure 2 depicts the scaling

Figure 2
0.1'0-81
o, + > x + = +
Lt 8 5 (@, +8,) =a, + 8
al.\\V
a, + 8,
(!2'*(!2=0.S

Rule (ii): If a <o, +8, take ag + By = o, + B, and

a a
12 . . . s
o T TR Scaling down is shown in Figure 3.
2 2
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Figure 3
- + = +
o tE o * By =ag b
/az * B2
al
0.10.2
o, —> —— =
2 o, + B, S

When @, =a, +8, then ag + Bs = o + B and ag = ay.

In this case the reduction is exact (see A.3).

Examplie 2

let k=3; o =28, B =25 @, = 213 8, =20, 0, = 20, 8, =2.

1 2
Since a, >a, +8, take o+ 8= (o) + 8 )a, +8,)/a = (30 x 24)/28
= 25.7143 and a = o, = 21. Rewrite o« as o, and B as B,.
Finally, since x, (=21) <@, + 8, (=22), the system

ag = (21 x 20)/22 = 19.0909 and By = 6.6234.

The lower 90% limit for system reliability obtained by simulating
10,000 values from the exact posterior distribution is 0.627. The

Timit given by the above approximating beta distribution is 0.629.

Exponential Times to Failure

Suppose that a given component has exponential failure rate A.
Then, given X, the time to failure x has probability density

function

v T T ey
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f(x) =2, x>0, A>0.

Let the uncertainty in A be described by a gamma distribution

with probability density function

Mo~ oA
g(a) = to(ted) ~ e " /r(n)) ,

T, > 05 n, > 0. The likelihood function when n components have

failed in a total time on test t is

o = MemAt

The posterior distribution of the failure rate is then
g(0) = ()" e 1) ,

when n = n,+n and 1t = T, + t. Again we have a flexible prior
distribution which is conjugate for exponential testing. Now, without
loss of generality, we may take the unit of time to be the mission

time whence the reliability of the component is
p=e".

It follows that the distribution of p has probability density function
£(p) = <"(-2np)"p*/r(n) .

This is precisely the distribution of the product of n independent
B(t, 1) variates. Thus such a component in a structure is
equivalent‘to n independent series components each with a B(t, 1)
distribution. If n 1is an integer than the reduction methods

given previously for Beta variates give a single approximating Beta
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distribution witha = t"/(t + 1)" and g = ((xr + 1) - "M/ (x + 1),
; Even if n is noninteger the above approximation is still very good.
Note that in Maximus noninteger sample sizes and successes are common

under reduction.

Example 3

Let n=3, =

40, Then o = 40°/412 = 38.07 and
B = {413 - 403}/M12

2.93. The exact Tower 90% limit for
reliability is exp {-Aa(.1)} , where (.1) is the 10% point

of the distribution of X. Since it is well known that 2t

has a chi-squared distribution with 2n degrees of freedom we have
A1) = x2(.1)/2 = 40 = 0.1331 giving e (1) Z0.875.  Using
the incomplete beta function with o = 38.07 and B = 2.93 we get

the corresponding approximate lower 90% limit of 0.864.

BN
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4.  CALCULATING LOWER LIMITS FOR A PARALLEL SYSTEM OF NONREPEATED
INDEPENDENT COMPONENTS

Let there be k components in the parallel system and suppose
that the posterior distributions of component reliabilities are, as
before, independent B(“i’ Bi) distributions; i =1, 2, ..., k.
The reliability of the parallel system for given component

reliabilities p,, p,s «..s Py is

_ k
ps-1 -121(1 -pi)
k
=1- 1 s Wwhere =1 -p; .
i=1 9 93 i
_ k
Thus 9 = 1 - Pg = big q;

if ;i - B(ui, Bi) then ai - B(Bi’ ai) and the results for series
systems can be used here by interchange of parameters and of
reliabilities by failure probabilities. Also one needs to scale
up rather than scale down, as is the case for series sytems. The

following example illustrates the procedure.

Example 4 k=3; o =6, B, =2; a, =6, B =2;

a, = 9, 63=1.

Component: 1 2 3

a+B 8 8 10
(@) :  (6) (6) (9)
B8 : 2 2 1

I

Sx8=32 10

(30) (9)
2 1




&
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The rule for scaling up when sample sizes are unequal is 'scale so that

ag + B is a minimum'. Thus we have

32 10
(30) (9)
2 1

ag + B, =16 x 10 = 160
(159)

%g

By = 1
5000 simulated values of system reliability gave a Tower 95%
Timit of 0,975, The Tower 95% limit given by the approximating

B(159, 1) variate is 0.980.
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5.  CALCULATING LOWER LIMITS FOR SERIES AND PARALLEL SYSTEMS OF
INDEPENDENT REPEATED COMPONENTS

5(a) Series Systems

Suppose that the posterior distribution for the reliability of a
component is B(a, B) and that k such components are connected serially.
The reliability of the series system is pk, where p is the

individual component reliability. A good approximating beta distribution

has parameters ags Bg given by
-1
o = Bl{1 - afa+l)...(a+k-1) a1,
(a+B)(a+p+1)...(a+B+k-1
Bs = B

The derivation of these expressions for o_, 8

¢» Bg s given in A.4,

Of course it is easy to obtain exact lower limits for pk since
they are simply the corresponding limits for p raised to the power k.
However, when such a structure is embedded in a more complex arrangement,
with components of different types, we do require a reduction to a
single beta distribution. The following examples show that the above
reduction works very well. It is based on the adapted sequential

procedure plus the method of moments - see A.4.

Example 5

k=2; a=30, g=2.

-l
o 2[{1 -gg—:—}‘g} . 1] = 14.762

wm

n
n
.

[ S T TR )
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Thus B(14.762, 2) 1is the reduced beta variate for p2. The exact
lower 90% limit for p2 from Table 16 of Biometrika, Vol. 1 is
(0.88023)% = 0.7748. The approximate limit given by the above

reduced beta variate is 0.7747, in excellent agreement with the exact
result. Maximus advocates equal splitting for repeated components

in series. The Lindstrom and Madden method is then applied as if the
components were of different types. The reduced beta variate is then
B8(14.06, 1.94), using the analagous procedures of Chapter 3. The
approximate lower 90% limit for p2 is 0.770, which is not as good as

the adapted sequential approach.

Example 6

K=4; o=30, g=2
-1
30 x 31 x 32 x 33 _
o = 2[{‘ - iz'—m} - ‘] = 7.154,

Bg = 2.

The exact lower 90% Timit is (0.88023)" = 0.6003 and the approximate limit
is 0.5999, again in excellent agreement. Equal splitting of parameters

gives 0.5770.

5(b) Parallel Systems

The formula for repeated components in parallel is given in A.4(i1).

We have

. BB+ 1) (Brk-1) 1
Bg = 0[11 (C+ﬁ)(u+8+1)..,(afﬁ:k.1)} {]

TR T T~ g .
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Example 7
k=4; a=8, g=2
ag = 8
SEPY (I ECIVES)

Exact:

Approximate:

The lower 95% limit for system reliability is 1 - the upper 95%
limit for failure probability. For q this limit is 0.4295
and therefore exact lower 95% limit for reliability is

1 -0.0326 = 0.967.

Using the approximating B(8, .0563) variate the lower

95% limit is 0.960.

P P~y -
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6. TWO COMPLEX STRUCTURES
Structure 1
Y4 &7
ra—z —  —l4—
- - - T /1
' ' o | 4
| 1 1 i 3 g
_ — - - - d
" L ¢
$
(1, 1), (1, 1"), (3', 3") signify replicates of components
1, 2 and 3 respectively.
Beta Parameters
Component a 8
3
1 29 1
]
- 2 10 1
b 3 9 :
‘F 4 8 2
’i 5 8 2
6 8 2
Using the reduction methods described previously
Mt = (1' * 1"} = B(14.5, 1); (2'y/2") = B(5, 1}; (3'/ 3") = B(9, 0.167)
' M2 = B(45.83, 0.167), M3 = B(248, 2).
: M1 * M2 * M3 = B(14.5, 1.182).
i
!
[

!
b 52
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Approximate lower 95% limit = 0.792
Exact lower 95% limit = 0.809.

(Based on 5000 simulated system values).

Structure 2

’ 1%
—_—2 2

(2', 2") are replicates of component 2.

Beta Parameters

Component a B

Gamma Parameters

n T
1 2 40
2 9 1
3 8 2
4 3 25

Converting the Gamma distributions to Series Beta distributions using the

results of Chapter 3 we get for component 1 a B(38.025, 1.985) variate

and component 4 reduces to a B(22.114, 2.886) variate. The final

system approximating Beta distribution has parameters 38.025 and

2.151.  This yields an approximate lower 95% limit of 0.8806.




5000 simulated values of system reliability using the computer

program gave a corresponding lower limit of 0.8859.
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APPENDIX A

An Alternative to Lindstrom and Madden

The Lindstrom and Madden method is recommended for series systems by
Maximus. We first describe an exact sequential procedure for series
systems and then show how it can be adapted to 4eal with arbitrary but
fixed test sample sizes. The proof of an int'resting property of the
adapted procedure is then given. Some comparisons with results given
by Lindstrom and Madden and also some other approximate procedures are
presented. Finally it is shown how the modified sequential procedure

can be converted to the analagous Bayesian procedure given in Ch. 3.

A.1  An Exact Sequential Procedure

Let there be k independent components in series. The component
types may be arbitrarily labelled 1, 2, ..., k. Suppose n
components of type 1 are tested and that s, prove to be reliable.

Take the sample size for component 2 to be n, = s, and suppose that s

1 2

are reliable. Continuing in this way the sample size for the kth
component is n, =s,_  and let s, of these be reliable. Then in
random sampling ;k is Binomially distributed with n trials and

parameter p = n$=1pi. Write

sy ~ Bin(n,, p).

Proof that s, - Bin(n,, p)

Let k = 2. Given n, = s, the probability generating function

1

-

for s, s

Sl
(q, +p,2) "y g, =1-p, .

n

6,(z[n, =s,)




———— .
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The unconditional probability generating function is

n
1 s |n 51 nl'S1
6,(2) = I (a, +p,2) 7| *p, (1 -0p))

5. =0 S

1 1

n n

1 s ny-s,
) [la, +p,2)p, ) " (1 - p,)

sl.-.O 51

nl
= ({9, *+ pyzlpy + (1 - py)]

nl
= [(1 - plpz) + plpzz]

n
(@+p) s P=pp,s 9=1-p.
The result for k components in series follows by induction.

A.2 A Forced Sequential Procedure

Now let n,, n,, ..., " be arbitrary but fixed sample sizes and let
Sys Sps «ees 5, be the corresponding numbers of reliable components
obtained in tests. Without Toss of generality label the components so
that n 2 n, LIERRIE 3 P For simplicity let k = 2 initially. Two

cases need to be considered,

(i) s, 2, and (ii) s, <M, .

The rule to 'force' the sequential procedure for case (i) is - sample at
random and without replacement from the test results for component 1 and

stop when n, successes have been obtained, The average sample size




o
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n, successes is n, x (n, + 1)/(s, +1). This is taken to be

the system sample size and the number of reliable systems is taken to be s,.

For case (ii) choose a random sample of size s, without replacement from the

test results for component 2. The average or expected number of reliable

items is s, x s,/n, and this is taken to be the number of reliable systems

in a sample of size n,. In both cases we assume that the results are

binomial test results and lower confidence limits for system reliability can

be obtained from binomial reliability tables, interpolating as necessary

for noninteger sample sizes and succcesses (number reliable). For the

above procedure both the sample size N and the number reliable in the

sample S

E(S) =

where p =

Proof

are random variables connected by the interesting result

p E(N),

P, b, - The procedure extends easily to general k.

E(N)

E(S)

that E(S) = p E(N)
n, n1+1
=n, I T p(S =s) +n p(S; <5s,)

n,-1

n,p, P(Sl 2 nz) +p, E S, P(Sl = Sl)
s,=0

-1
nn n} s, n,~s, M2 n] s ny-s,
= n - -
2P2 SIZHZ [sll p, ( p,) +p, ) S1{s {Px (1-p,)
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X x~-1 x-1
Using the combinatorial identity ()’J = (y } + {Y'J we can write

Thus

n n S n -s n n
2 1 1 1 1 71 1 2
E(N) = 'p_ Z [S ] Py (1 - Pl) - nz[n } pl a - p1)
2

A second application of the combinatorial identity to the last term on the

right hand side of E(N) gives

n n, n s n,~s, n n,-1 n, -n,+1
I e A U e A A R (R
P $,=n, (s, 2

n_ -1 n. -s
n, n, 1St L s { 1} P (1 -p) v
- — p (1 - ) + —— 1 1 pl
Pl SIZHZ[SI] 1 Py N SIZ'U 1
= E(S)/(p,p,)
E(S) = p E(N) .

[P S

Ry
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A Comparative Example

k=3; n =30, s, =28; n, = 24, s, = 22; n, = 20, s, = 19.
Reducing components 1 and 2 wusing case (i) gives n = 25.714,

s = 22. Combining these values with those for component 3, again
using (i), gives the final values n = 23.377, s =19. Linear
interpolation in the tables of Cook, Lee and Vanderbeck (1964) gives a

Tower 90% confidence limit of 0.670 for system reliability.

The Lindstrom and Madden method gives n =20 and s = 16.256

yielding a lower 90% confidence limit of 0.654.

There is no unique exact lower Timit but other methods suggest
that exact procedures would give values between 0.68 and 0.69 - see

Example 1 of Winterbottom (1984).
Note that case (ii) is the Lindstrom and Madden procedure.
Overall the sequential approach is less conservative than Lindstrom and

Madden and merits further study.

A.3 An Analagous Bayesian Sequential Procedure

Consider k independent beta variates B(ai' Bi)’ i=1,2, ..., k.
Suppose that o) + 8, 20, + B, 2 +e0 2Oy *+ By and that a =@, + B,
cees @) = oyt By Then the distribution of the product of these

k
variables is exactly Beta B(uk. ) Bi)'
i=1

Now (see Chapter 2), equating o with s, o + g with n

and regarding reliability as a random variable with a, g fixed, the




result

E(S) = p E(N) —> a = E{P){(a + B). This suggests the *forced’

’ sequential procedure of Chapter 3 when the ag, B; are arbitrary.

A.4 Repeated Components in Series or Parallel

| (i) Series Systems

Let k = 2 so that we require an approximating distribution for p?2.

i? Suppose that the distribution of p is B{a, B).

{ Split a, B8 according to the following sequential scheme
X
y=y

P 2z

where X +y=a+8 and y +2 = o. Subtraction gives x - z = 8.
Knowledge of y is not required since we take ag + B = X and @y = Z.
Thus far x and z are not uniquely determined. By the method of
moments equate z/x, the mean of the approximating beta distribution, to

the mean of p2, i.e.

2/x = afa+l)
k (a+8) (a+B+1)
Using x -z=8, X= ag * Bgs Z = ag and solving gives

Q
1]

-1
8 {1 ___afa+l) -1
s {a+8) (at+B+1)

"
w
.

and Bs
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The corresponding expressions for general k are

-1
1 - afa+])...(a+k-1) } -1
(a+8)(a+8+1)... (a+B+K-1)

(2]
i

and Bs

n
™
.

(ii) Parallel Systems

Since failure probability q = 1 - p all that is necessary to obtain
corresponding results for parallel systems is to interchange «, 8 in the

above results for series systems.

Thus

-_1
B(B+1)...(B+k-1) -
(a+8) (a+B+1). .. (a+B+k-1)




APPENDIX B

B.1 Directed graphs

[t 1e possible to represent a control system by a directed graph
where the nodes are the components in the system and where the directed
lines represent the flow of control signals.

To cater for branching at the start of a graph it is convenient to
introduce &an extra node, called the sgource, before the first node.
Thus a source node has no inputs. Similarly, to deal with muitiple
returns at the end of the graph, an extra node with no outputs, called
the sink, is added there. The graph then has a unique entry and a
unique " exit and the reliability of the whole graph is simply the
reliability of the connection between the source and the sink.

In order to describe the graph the nodes are numbered sequentially,
starting with zero for the source and reserving the highest number for

the sink. [t is then possible to store the connection information by
forming, for each node, the set of nodes which directly receive |its
outputs. A convenient representation for this is as a linked list of

records called KIN where each record has integer fields FATHER, SIZE and
a field SONS, consisting of an integer set, such that the node FATHER
has SIZE outputs to nodes called sons, the numerical values of which are
held as elements of the set SONS.

If there s a linkage through a succession of nodes from A to B

then the corresponding set of node numbers is called a path. Clearly
there may be more than one path between two nodes and any node may be =a
member of several paths. Two paths are said to be independent if thefr
intersection 1is the null set otherwise they are dependent. Thus
dependent paths have nodes in common and independent paths do not. A
path which contains both the socurce and the sink is called a complete
path, otherwise it i{s called an incomplete path. The type of control

system which 1is considered in this report consists only of complete
paths.

From the information in the 1ist KIN, all distinct and complete
paths may be found. These paths may be manipulated to give the
algebraic expression for the overall relfability of the graph and
finally this expression may be evaluated numerically.

This process is most suitable for embodiment in a computer program
which interrogates the user for the son nodes of each father node,
requesting also reliabiliity information for each node and which then
proceeds to perform the appropriate manipulations on these data.
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B.2 Control system reliasbllity

The algebra for dealing with the reliability of combinations of
components in a control system is based upon the two results :-

(a) if nades A and B are directly connected 1In series then the
reliability of the combination is rara where ro and ry, are the
reliabilities of A and B,.

(b) 1f nodes A and B are connected in parallel then the reliability
of the combination i 1 - (1 - ra ) (1 - re).

These results are readily extended to more complex cases of
serieg/parallel connections.

it all control systems were composed of series/parallel
combinations of components then the rules (a) and (b) would be
sufticient to determine the overal) reliability of the systen. Now the

graph in fig.1 1is an example of a control system where {t 118 not
possible to discover a palr of nodes which are either in series or {n
parallel. It follows that some other technique is required to assess
the overall reliability of a system Iin which the nodes are connected in
an arbitrary fashion.

The new technique for the analysis of general control systems
starts with the determination of all distinct paths from the source.
Thigs s achieved by using a linked list of records called ROUTE, each
record contains a field PATH consisting of the set of nodes in a path
and a field LASTIN which holds the last node that had been added to
PATH. Initially ROUTE consists of a single record with PATH = (0] to
represent the source node and with LASTIN = O.

The information in KIN is then accessed to extend the 1ist in ROUTE
as faollows :-

Far each record in ROUTE, consider LASTIN to be a father node
having the sons S;..S.::ey then generate and add to ROUTE a total of
(SIZE - 1) replicate records to give SIZE coples. if these copies have
PATH fields denoted by pi .. Pai1:e and LASTIN fields L;. L.i.ey then for
k =1 to SIZE add s. to p. and set L, = s\. It a son to be added |is
the sink, then the assembly of that particular record 13 terminated.
This process i1s repeated unti) each record in ROUTE has been assembled.

All paths in the systems under congsideration are complete and it
follows that any such system will exhibit overall failure only if every
path falls. This means that the paths must be caonsidered, in some
senge, to be connected in parallel between the source and the sink.
However, this concept needs to be modified by taking account of the
dependences between paths.

To describe the algebra required for path manipulation let P be =8
complete path and let {P) denote the associated reliabliity expression
obtained as the product of the reliabilities of the nodes in P. Then
for a control! system without branches, there is onily one path and (P}
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is the system reliability. Algo if P and Q are any two independent
paths where the nodes in P are connected in series with the nodes or Q
then the reliability of the combination is the reliability of the wunion
gset for P and Q, thus (P}#{Q} = {P U Q). It is convenient also to
use the notation [ P - Q@ 1 for the set of elements which are members of
P but not members of Q.

Suppose now that S, and S; are two complete paths and it |is
required to derive their combined reliability expression. Using T to
denote the intersection set of S, with S,, it follows that the nodes in
T are linked in series with the parallel combination of the nodes in the
geta [ S - T land ( S, - T 1. The reliability of this parallel
combination is then

{{ S« - T 1} + (L S - T I} - (LS, -T1l1lUI[LS, - T .
The connection now, in series, of the nodes in T gives
{T*#{L S - T 1) + (Ty*(L S - T 3) - (T¥*(L S, - TI UV IS, - T 1}
which is equivalent to
(TULS -T11 + {TUCL S, -T 11} ~(TU (L S, -TI1ULS, - T
and this simplifies to

(S} + {S,} - (S¢ U S,) .

Now the expression 1 - (1 -8; )*( 1 - S, ) can be taken to
vield S, + S, - S, %S, , so that if the operator % is replaced with the
union operator and the operators +, - understood to act only on the

equivalent reliabiliﬁy expressions then the required reliability
expression is obtained.

The reliability for a further complete path S; in conjunction with
S¢ and S, is then given by assaociating Ss with the three components
above giving successively
(S.)+(S;)-(S; US;) [
(Sz}"‘(S:)"(s: US;) '}
and - (SsU S2} - (S35} + (S, U S, U Ss1) .
The sum of these reliabflities can be derived from the expression
1 - (1 - S,)%(1 ~ S,)#%(1 - S3) {f, as before, the operator % {s replaced

by the union operator.

It follows that, with these interpretations, rule (b) can be
applied to complete paths to give their combined reliability expression.
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The procedure to be adopted for a general control system then
becomes :-

(1) find all distinct complete paths ,
(i1) it there are N such paths denoted by S,, 32, . s Su then
form the expression
l‘ll(i"Sk)
k = {,N

(11{i) evaluate the products in this expression using the given
interpretations for the aperators ,

(iv)y finally, translate the resulting expression in sets into the
corresponding reliability expression.

For the system of fig.1l the construction of ROUTE is as follows :-

{03 initial path, now add the son of node 0,
[0 11 add the three sons of node 1,
[0 1 21 (O 1 31 (O 1 4] add the son of node 2,
[0 1 251 (0O % 31 [0 1 4) add the sons of node 3,
{01 25 {01 385) (01361 (01 4] add the son of node 4,
(01 25)1 (01 381(0136] (01 4861 add the son of node 5,
{01 25 71 (01357 (01361 (01t 461 add the son of node 6,
{01 25711013571 (01 3671 1[01 46 7} add the son of node 7

to give the four complete paths represented by the sets :-

to 1 35 7 81,
(01 46 7 81.

S
Ss

{12585 7 8), Sa
(01 36 7 81 and S.

The reliability expression for the system is now found by evaluating
(1 - S;)( 1 - S2) =8 USy -~ S, - Sa2 + 1

=[{0123578]-10012578]-10(01365T7281 +1,

then (1 - S,)C 1 - Sz2)C 1 -~ S3)

1 -~-(0126578)-1(0013S578)] -(0136781 + (01 236578)
+ [01 356781.

and finally, 1 - ( { - §,)C 1 - Sp)C 1 - 852 1 ~ S,) =
(01 25781+ ({0136578)+« [0136786) + (01 4678)

- (0123578 -(0134678)1-10135¢678]
-~ [01 2456781 +[01 2346586781,
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The corresponding reliabiiity expression, assuming that the =source
and sink reliabilities are both unity, is then found to be :-

r;(rarfg + ryfyg + rsP, + Pralf, ~— Tralslfs =~ Pylel,
- P3Tsle — PaleFsl¢ + F2l3TalsP)lry .

B.3 Numerical assessment of reliability

When the nodes 1in a control system or a program have given
numerical values for their reliabilities then it is a simple matter to
evaluate the overall reliability by direct substitution in the
reliability expression.

However, if each node has an assumed reliability distribution then
it should in principle be possible to find the overall reliability
distribution as an analytic expression. The problem becomes one of
finding the theoretical distribution for a weighted sum of products of
variates with known distributions. e

A simpier and more practical alternative to this thecretical

approach uses a Monte Carlo method. Here the reliability expression is
evaluated many times using, for each evaluation, component reliabilities
drawn at random from their given distributions. These overall

reliability values are accumulated in the form of a histogram which |is
then taken to be an approximation to the required distribution.

The following tabulations give the results of the Monte Carlo
assessment for the reliability of Structures 1 and 2, wusing 5000
simulated system values.

Reliability histogram for Structure 1 :-

reliability frequency
range
0.00 to 0.085
0.05 to 0.10
0.10 to 0.15
0.15 to 0.20
0.20 to 0.25
0.25 to 0.30
0.30 to 0.35
0.35 to 0.40
0.40 to 0.45
0.45 to 0.50
0.50 to 0.55
0.55 to 0.60
0.60 to 0.65
0.65 to 0.70
0.70 to 0.75
0.75 to 0.80 62
0.80 to 0.85 260
0.85 to 0.90 903
0.90 to 0.95 2070
0.95 to 1.00 1695

OO O0000OO0OOOOO0OOO
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Mean reliability = 0.9253
Vvariance estimate = 0.001849

Reliability histogram for Structure 2 :-

reliability frequency
range
0.00 to 0.05
0.05 to 0.10
0.10 to 0.15
0.15 to 0.20
0.20 to 0.25
0.25 to 0.30
0.30 to 0.35
0.35 to 0.40
0.40 to 0.45
0.45 to 0.50
0.50 to 0.55
0.55 to 0.60
0.60 to 0.65
0.65 to 0.70
Q.70 to 0.75
0.75 to 0.80
0.80 to 0.85 66
0.85 to 0.90 398
0.90 to 0.95 1739
0.95 to 1.00 2793

WORPOOODOOOOOOOOO

Mean reliability = 0.9474
Variance estimate = 0.001417
B.4 Program listing

The following is the Pascal program for the Monte Carlo assessment
of control system reliability.

program controlsystems (input, output);

{ This program reads data which represents a network of components
with a start component numbered zero, a finish component numbered N
jntermediate components numbered 1..N-*, and one way links between the

components forming various routes from component zero to component N.
A list of all possible routes is built up and then an expression 1is
formed which represents the reliability of the whole network in terms of
the reliabilities of the individual components.

The program requests values for the Beta or Gamma parameters of
each node and then uses a Monte Carlo technique to evaluate the
reliability of the network count ¢ = 5000 ) times using a pseudo-random
generator to assign reliabiiity values to the nodes, with each
reliabliliity being derived from the appropriate Bets or Gamma

D g o )
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distribution. }

histogram is assembled for the

overall reliability

const
max = 50; { maximum component number }
count = 5000; { number of values for the overall
reliability histogram }
type
range = O..max;
collection = set of range;
ptr = “node;
node = record

path : collection;

coeff, lastin : integer;
next : ptr
end;
point = “family;
family = record
father, size : range;
sons : collection;
kin : point
end;
barams = array (range,1..2] of real;
var

route, q : ptr;
result, mean, varn :

real;

reliability : array (rangel of real;

source, sink :range;
Iinks : point;
betapars : params;

X, ¥y Zz, i, k, nofO :integer;
nodelist : array (rangel

{ a node list element

histo : array (0..19]

-1
(o]
1

of

of ~1..1;

if the node has not yet been mentioned
if the node has been given as an input
if the node outputs have been supplied }

integer; { Array to hold the results of }
{ a Monte Carlo simulation for }
{ reliability as a histogram. )]

array [(1..32] of real;
¢ array [(1,.311 of real;
array [6..471 of real;

fad
-
[ N

{ The arrays a,

t,

h,

d are required }

{ for the generation of variates from }
{ the normal or Gamma distributions. }
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function random:real;

{ Thia random number generator is based upon N.P.L.
B.A.Wichmann and I.D.Hill.
given initial random integer values which should be

var
w, ran : real;

begin
repeat
X = 171%(x mod 177) - 2%(x div 177);
if x<O then x := x + 30269;
y = 172%(y mod 176) -~ 35#%(y div 1786);
if y<O then y := y + 30307;
Zz = 170%(z mod 178) - 63x%(z div 178);
if 2<0 then z := z + 30323;
w = x/30269 + y/30307 + z/30323;
ran := w - trunc(w)
until ran <> 0;
random := ran
end;

{ The following procedures FL GM GS GT GO are from

pages 223 to 246 (1974) by J.H.Ahrens and U.Dieter. They are
efficient routines for computing random wvariates from a normal
distribution (FL) and from a gamma distribution (GM GS GT GO). The

function betagamma returns a random reliability either as a Beta variate

or as exp( - Gamma variate). }
procedure fl(var x : real);

label
i, 4, 6, 13, 14, 17;

u, us, tt, w, y, aa : real;
s, I : integer;

random;

trunc(2%u);
trunc(32#(2%u -~ g));
trunc(u);

f 1 <> O then

[ 1

Report DITC 6/82 by

The global variables x, Y, z are to be

less than 30000. }

Computing vol.12,
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:= random;
1= uxali+i]l - aa);
t 1= (w/2 + aa)xw;
f us > tt then goto 17;
u := random;
if us < u then

:= al321;
u = 2%u;
while u ¢ 1.0 do

+ dlil;
i+ 13
> 47 then goto 1i;
2

13:
t= (w/2 + aa)*w;
:= random;
us > tt then goto 17;
u := random;
if us < u then
begin
4 := random;
goto 13
end;
tt 1= uj
goto 14
end;
17: ¥y := aa + w;
if 8§ = O then x := y else x := -y
end;

14:

-
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procedure gm(n : integer; var x : real);

var

Lol o]

: real;
: integer;

procedure gs¢a : real; var x : real);
label 13

var
p, b, u, xx : real;

begin
b := (2.718281828459 + a)/2.718281828459;
1: u := random;
p := b#¥*u;
it p > 1 then
begin
xx = =~ In({(b - p)/a);
if random > exp((a - 1)#*In(xx)) then goto 1 else x
end
else
begin
xx := exp(ln(p)/a);
if random > exp(-xx) then goto 1 else x :=
end
end;

procedure gt(a : real; var x : real);

var
m : integer;
f, z, y :real;

begin
m := trunc(a);
f := a - m;3
if m = O then y :t= O else gm(m,y);
it £ = O then z := O else gs(t,z);
X 1= y + 2

end;

.

XX
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procedure go(a

6:
7
8:

- 37 -

real; var x : real);
label

2, 7, 6, 8, 10;

var

mu, v, sig, sig2, w, d, b, u, s, ss, xx :real;
begin

mu := a - 1;

v = sqrt(al);

silg2 := a + 1.632993161855%v;

sig := sqrt(sig2);

w := sig2/mu;

d := 2.44948974278318x%sig;

b := mu + d;

u random;

if u <= 0,009572265238289 then goto 8;

fl(s);

XX = mu + sig¥s;
if (xx < 0) or (xx > b)
u := random;

ss :=8qr(s)/2;

if s >= O then goto 6;
if u <=1 - ss*((1

then goto 2;

if u <= 1 - ss*(w-1) then goto 10;

if In(u) > mus(l + In(xx/mu)) ~ xx + ss then goto 2 else goto 10;
s := - ln(l - random);

Xxx := b*(1l + s5/d);

u := random;

{if In(u) > mu*(2 + ln(xx/mu) - xx/b)+3.7203284924588

then goto 2;

10: x := xx

end;

- 2%s/v)*w -1) then goto 10 else goto 7;

-In(sigxd/b)
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function betagamma(a, b : real):real:

{ Procedure to compute a reliiabflity from the random number generator.
A beta variate is returned for the reliability if a, b are positlive with
the wvartate proportional to the cumulative distribution of x#x(a-1) =«

(1 -~ x)*%(b-1). If a, b have been entered as negative values then this
indicates that the required reliability is to be derived from a Gamma
distribution and the value returned is exp(-y/tbt), where vy is a Gamma
variate from the cumulative distribution of x#*(la( - 1) * exp(-x).
The value y/tbl is the corresponding wvariate from the cumulative
distribution for the expression x%x({af( ~ 1) % exp(-ibl#*x). }

var

X, ¥, € :real;

begin
¢ := abs(a):
if ¢ <= 3 then gt(c,x) else gol(c,x):
{f a < O then betagamma := exp( -x/abst(b))
else
begin
it b <= 3 then gt(b,y) else go(b,y):
betagamma := x/(x+ty)
end
end:

procedure split (var route, hd : ptr; n : range);

{ Split route into two lists, one called hd containing those records
for which n is a member of their path fleld, the other list called
route containg all the other records. }

var
P ¢ ptr;

begin
if route <> nil then
if n in route“.path then
begin
p := rout

hd := p;
gplit (route, hd, n)
end
elge split (route~.next, hd, n)
end;




procedure display (s : collection);

var
i : range;

begin
for i := O to max do
if i in s then write (i : 1,
writeln

end;

procedure show (route : ptr);

begin
while route <> nil do
with route” do
begin
write (coeff : 5, * : ')
write (lastin : 5, * : °
display (path);
route := next
end
end;

;
)3

procedure create (var route : pt

{ Read in all the data for the network and create the

linked list called route. }

var
i, j, m, n ; range;
P, T ptr;

kith : point;
s : collection;
done, test : booclean;

begin

{ tirst find all connections in
of sons of the father and the

repeat
n := 0;
while nodelistinl] <> 0 do
nodelistinl := 1;
nof0 := nof0 - 1;

v 1);

r);

kith giving
number size

n :=n + 1;

the father node,
of these sons )

writeln (’Number of connections from node ’, n : 1, °*

readin (1);
new(kith);
kith~.father :
kith~.size :=
kith*.sons :=

the

corresponding

set

L )

Wi e
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if 1 = O then sink := n;
it (n <> gource) and ¢(n <> sgink) then

begin
writeln(’Reliability parameters of node ’",n : 1,” 2 ?);
writeln('Enter the negative values for Gamma distribution'®);
readin(betapars(n, 1],betaparsin,21)

end;

it 1 > O then

begin
for J := 1 to 1 do
begin

writeln ('Connection ', j : 1, ' from node ', n : L, ' ?2 )
readln (m);
kith~.s0ons := kith".sons + (ml;

if nodelistiml = -1 then
begin
nodelistiml := O;
nof0 := nofO0 + 1
end
end
end;

kith~.kin := links;
links := kith
until nof0 = 0;

{ now use the connections in links to find all pathways through the
graph from source to sink 1}

new(route);
with route” do

repeat
p := route;
done := true;
repeat
it p <> nil then
it (2ink in p~.path) or (p~.lagtin < 0) then p := p~.next;
test := p = nil;
if not test then
test := not ( sink in p~.path) and ( p~.lastin >= Q)
until test;
it p <> nil then
if not ¢ sink {n p~.path) and (p~.lastin >= 0) then
begin
kith := links;
while kith~.father <> p~.lastin do kith := kith~.kin;
8 := kith".sons;
for J := 1 to kith*.size do




_““:t‘ .rv-——

if § < kith~.size then

begin
m := 03
while not ( m in s ) do m :=
s = s - [ml;
new(r);
r~ 1= pT;
r~.path : ~.path + (m);

=r
if not ( m in p~.path) then

r~.lastin := mj;
done := false
end
elge r~.lastin :=
r~.next := route;
route := r
end
else
begin
m := O3
while not ¢( m in s ) dom :=
if not ( m in p~.path ) then
begin
done := false;
p~.path := p~.path + [ml;
p~.lastin := m

end
else p~.lastin (= - m
end
end
until ( p = nil ) and done

end;

m + 13
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procedure comb (hd : ptr;

{ Convert the linked list
terms. 1}

var
P, 9, ¥ : ptr;
s : collection;
! done : boolean;

hd;
route;
whijle q <> nil do
with q~ do
begin
new (p~.next);
P := p~.next;
p~.path path + h
p~.coeff : - coeff
p~.lastin sink;
q next
end;
p~.next nil;
while hd <> nil do
begin
s ¢ hd~.path; .
q : route;
done := false;
repeat
if q~.path =
begin
qQ~.coeff :=
if q~.coeff
begin
if q = route
else r*~.next
dispose (q)
end;
done :
end
else
) begin
v r
q
end
until done or
if done then
begin
' :=hd;
. hd hd~.next;
| dispose (r)
end
else

n

i p
: q

=
:

=
:

e S

s th

v

q”.

true

qi
q~

.next

(q =

- 42 -

var route : ptr);

of paths into the linked iist

d~.path;
* hd~,coeff;

en

coeff + hd”.coeff;

O then

then route
q~.next;

:= q~.next

nil);

of reliability




pow %

_V'"A"'

b._;
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¥
?
% : - 43 -~
i
it
i
i
b begin

r~.next := hd;

hd := hd*.next;

r*.next~.next := nil

end
end
end;

procedure combi

var
p, hd : ptr

begin

ne (route : ptr);

hd := route“.next;

route~.next
while hd <

begin
P := hd~.
comb (hd,
hd := p
end
end;

:= nil;
nil do

next;
route);
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procedure evaluate (route

{ Compute the numerical expression for the overall reliabtility.

var
P : ptr;
X : real;
8 : collectiong
{ : integer;

begin
result := 0.0;
P := route;
while p <> nil do

begin
s = p~.path;
X := p~.coeff;
i := 0;
while g8 <> (1 do
begin
if 1 in 38 then
begin
X 1= X
s 1= 8 (i1
end;
I := 1 + 13
end;
result := result + x
P := p~.next
end
end;
begin
nadel istfO] := O;
for { := 1 to max do nodel
nofO := 1;
all] := 03
al2] := 0.03917608550309;
al4) := 0.11776987457909;
al6) := 0.19709808429430;
alBl := 0.27769043982157;
af10] := 0,.36012989178857;
ali12] := 0.44509652498551;
ali14] := 0.53340070624127;
al16] := 0.62609901234641;
ali18] :1= 0.72451438349236;
al20] := 0.83051087820539;
al22]1 := 0.94678175630104;
2(241 := 1.07751556704027;
af26]1 := 1.22985875921658;
al28]1 := 1.41779713799625;
al30) := 1.67593972277344;
al32) := 2.15387460406144;

t ptr;

.
s

istfi]

al31]
al5)
al7]
al9] :
al11]
al13]
al15]
al17]
al191]
al21]
al23]
al2851]
al27]
al291]
al311]

#n B on
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*# reliabilitylil;

var result real);

_1;

0.07841241273311;

0.15731068461017;

0.23720210932878;

0.31863836396437;

0.40225006532172;
0.48877641111466;
0.57913216225555;
0.67448975019607;
0.77642176114792;
0.88714655901887;
1.00999016924958;
1.15034938037600;
1.31801089730353;
1.534120544352533
1.86273186742164;

}

Wt e
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for {1 := 1 to 31 do

begin

t(i) 2= (Cali+1) - afi))/2 + alid)xCali+1l - alil);

h{i1) := (afi+1) - alil)sC(t - tCil)

end;
dl6]1 := 0.26368432217502; d(7]1 := 24250845238087;
d(8) := 0.22556744380930; d[9] := 0.21163416577204;
d[101] 0.19982426749317; dli11] 0.18991075842246;

0.10126505151402; d(371]
0.09844828202068; d(39]
0.09585177768776; df{41]
0.09344840710526; di[431
0.09121548217294; dl{451}
0.08913386650005; d(471]
X := 31415;

y := 27188;

df12] := 0.18122518100691; dl13) :
d{i4] := 0.16684190866667; d[1S5]) :
di168] := 0.15534871747692; d(171 :
d(18] := 0.14590257684509; d(191] :
df{203 := 0.13786317369537; di21] :
d{22] := 0.13117215026483; d[23] :
df24] := 0.12527909006226; [25) :
dl26) := 0.12010355965651; d{(27] :
dl(28] := 0.11551188226063; d(29] :
d(30]1 := 0.11140272044119; d(311] :
d[321 := 0.10769761G656476; d(33] :
dl34) := 0.10433484129317; d(35] :

Q
-
p3
(o]
—

writein('Input random seed, an integer between O and 30000’);

readln(z);

source := 03

sink := max;

iinks := nii;

create (route);

q := route;

combine(route);

show(route); writeln; writeln;—
reliability[0] := 1.0;
reliabiliitylgink]l := 1.0;

for i := O to 19 do histolil := O;

mean := 0.0;

varn := 0.0;

for 1 := { to count do
begin

for k := 1 to sink-1 do

reliabiliity(k] := betagamma(betapars(k,1]l,betapars(k,21);

evaluate (route, result);
mean := mean + result;
varn := varn ¢+ sqr{(result);
k := trunc(20%result);
histol(k]l := histolk] + 1
end;
writeln(’ range

0.
0

0.17360140038056;
0.16079672918053;
0.15040838382813;
0.14177003276856;
0.13444176150074;
0.12812596512583;
0.12261088288608;
0.11774170701949;
0.11340234879117;
0.10950385201710;
0.10597677198479;
0.10276601206127;
0.09982723448906;
0.09712430874765;
0.09462746119186;
0.09231190933664 3
0.09015683778986;
0.08814461935364;

frequency’);
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for 1 := 0 to 19 do
writeln(i®x0.05:7:2,* to 7,(i+1)%0.05:4:2,histol(11);
mean := mean/count;

varn := (varn - count * sqr(mean))/(count - 1);
writeln; writeln(’ Mean reliability =',mean);
writeln(’ Variance estimate =',varn)

end.

B.S5 Procedures toc compute beta and gamma functions

The following Pascal procedures are appended in case numerical
values are required for Beta or Gamma functions. They do not form part
of the program for analysing the control structures.
function logama{( x : real):real;

{ compute log gamma(x) function }

var
xc, f, z :real;

begin
XC = X3
it x¢ >= 7.0 then f := 0.0
else
begin
f := 1.0;
z = %uey
while z < 7.0 do
begin
Xc 1= 23
f = fuz;
2 :=z + 1.0
end;
xc := xc + 1.0;
f := - In(f)
end;
z 3= 1.0/s8qr(xe);

logama := f + (xc-0.5)#In{xc) - xc + 0.918938533 +
(((4.0%2-3,.0%2)%2-14,0)%2+420.0)/(5040,0%xc)
end;
function logbeta( p, q:ireal):real;
{ compute complete log beta function }
begin

logheta := logama(p) + logama(q) - logama(p+q)
end;




function betain( x, p, q, zeta : real; var ifault

: integer):real;

o a ot

{ compute incomplete beta function ratio for argument x between

0o

and 1 and for p, q positive }

label

3, 4, S;
const

accuracy = 1.0e-8;
var

index ,ok : boolean;

psq, ¢x, pp, 9Qq, xx, term, ai, rx, temp,
ns : integer;

begin
beta

HEE'H

ifault = 03

if (p <= 0.0) or (g <= 0.0) then ifault
if (x < 0.0) or (x > 1.0) then ifault :
ok := ifault = O;

if ok and (x <> 0.0) and (x <> 1.0) then
begin
Psq = p * q;
cx := 1.0 - x3
index := p < psq¥x;
if index then
begin
XX = CX;
cX = X;
PP = q3
qq = p
end
else
begin
XX = Xj
PP = Pj;
Qq := q
end; -
term := 1.0;
ai := 1.0
beta := 1.0;
ns := trunc(qq + cx*psq);
rKx = XxXxX/CX;
temp :=qq - ai;
if ns = 0 then rx := xx;
term := term*temp*rx/(pp+ai);
beta := beta + term;

temp := abs(term);
ai + 1.0;

ns - 1;

>= 0 then goto 3;

beta

HERES
H

: real;

= accuracy) and (temp <= accuracy*beta) then goto 5;



:= betasexp(pp*Iln(xx)+(qq-1.0)*In(cx) - zeta)/pp;
if index then beta := 1.0 - beta
end;
betain := beta
end;

function betafn( x, p, q :ireal):real;

compute incomplete beta function ratio, see change below }
for how to compute the incompiete beta function itself. }

var
a, r : real;
j ¢ integer;

begin
r ¢t= logbeta(p,q);
a := betain(x,p,q,r,J);
if § = O then betafn := a { for beta function replace := a }
{ with := a*exp(r) }
else
begin

writeln('Error in incomplete beta function’);
writeln('x=",x:4," should be between 0 and 1');
writeln('p=',p:4,' should be > 0');
writeln(’'q=',q:4,"’ should be > 0*)
end
end;

Fig. 1
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